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Abstract

To mitigate the high inference latency stem-
ming from autoregressive decoding in Large
Language Models (LLMs), Speculative Decod-
ing has emerged as a novel decoding paradigm
for LLM inference. In each decoding step, this
method first efficiently drafts several future to-
kens and then verifies them in parallel. Un-
like autoregressive decoding, Speculative De-
coding facilitates the simultaneous decoding of
multiple tokens per step, thereby accelerating
inference. This paper presents a comprehen-
sive overview and analysis of this promising
decoding paradigm. We begin by providing
a formal definition and formulation of Specu-
lative Decoding. Then, we organize in-depth
discussions on its key facets, including current
leading techniques, the challenges faced, and
potential future directions in this field. We aim
for this work to serve as a catalyst for further
research on Speculative Decoding, ultimately
contributing to more efficient LLM inference.1

1 Introduction

Large Language Models (LLMs) have achieved
remarkable proficiency in a range of downstream
tasks (OpenAI, 2023; Touvron et al., 2023a,b; Chi-
ang et al., 2023; Jiang et al., 2023). They are
progressively evolving as the cornerstone of com-
prehensive API interfaces (e.g., ChatGPT2), offer-
ing human life services and guidance. However,
the inference latency of these sizable models has
emerged as a substantial obstacle restricting their
further applications. This latency primarily arises
from the token-by-token generation necessitated by
autoregressive decoding, resulting in an escalation
of the inference latency with both the length of the
generated sequence and the model’s scale.

1For ongoing reference, the relevant papers are summa-
rized and will be regularly updated at https://github.com/
hemingkx/SpeculativeDecodingPapers.

2https://chat.openai.com
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Figure 1: In contrast to autoregressive decoding (left)
that generates sequentially, Speculative Decoding (right)
first efficiently drafts multiple tokens and then verifies
them in parallel using the target LLM. Drafted tokens
after the bifurcation position (e.g., ) will be discarded
to guarantee the generation quality.

To accelerate LLM inference, an innovative in-
ference paradigm, Speculative Decoding, has been
introduced (Stern et al., 2018; Xia et al., 2022;
Leviathan et al., 2023; Chen et al., 2023a; Miao
et al., 2023). As demonstrated in Figure 1, Specu-
lative Decoding first leverages a drafter model to
efficiently decode multiple tokens as speculation of
future decoding steps and then uses the target LLM
to verify the drafted tokens in parallel. Only those
tokens that meet the LLM’s verification criterion
are accepted to guarantee high-quality outputs.

Speculative Decoding is founded upon two key
observations about LLM inference: 1) many easy
tokens can be predicted with less computation (e.g.,
using a smaller model), and 2) LLM inference is
highly memory bandwidth bound (Patterson, 2004)
with the main latency bottleneck arising from mem-
ory reads/writes of LLM parameters rather than
arithmetic computations. Drawing on these ob-
servations, Speculative Decoding adapts the con-
cept of speculative execution3 to focus the LLM’s
computational efforts on the validation of multiple

3Speculative execution (Burton, 1985; Hennessy and Pat-
terson, 2012) is an optimization technique used in computer
architecture where tasks are performed in advance and subse-
quently verified for their necessity, thereby circumventing the
delays inherent in sequential task execution.
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Figure 2: Timeline illustrating the evolution of Speculative Decoding. After 2022, Speculative Decoding was
formally introduced as a general decoding paradigm to accelerate LLM inference and garnered widespread attention.

pre-drafted tokens, substantially diminishing the
need for frequent memory reads/writes operations
of LLM parameters, thereby improving inference
efficiency.

While Speculative Decoding shows promise, it
raises several critical questions that warrant further
investigation. For instance, how to select or de-
sign the drafter model to strike a balance between
speculation accuracy and drafting efficiency (Xia
et al., 2022; Chen et al., 2023a; Santilli et al., 2023).
Additionally, it is essential to examine whether
the verification criterion can maintain both gen-
eration diversity and output quality (Miao et al.,
2023; Spector and Re, 2023). Furthermore, care-
ful consideration should be given to closely align
the prediction behavior between the drafter and the
target LLM for higher speculation accuracy (Zhou
et al., 2023; Liu et al., 2023).

Amid the rapid expansion of research in Specula-
tive Decoding, this work makes the first attempt to
present a survey of this field, aiming to raise aware-
ness within the academic community regarding the
latest advancements. We provide a systematically
organized categorization of current research and an
in-depth analysis of relevant studies. Besides, we
highlight the challenges and potential directions,
hoping to serve as an essential guide for newcomers
and to shed light on future research.

2 Overview

This paper offers a comprehensive survey of Specu-
lative Decoding as a promising decoding paradigm
for accelerating LLM inference. We commence
by delivering an in-depth introduction to the early
stages of Speculative Decoding research (§3), illus-
trated by a timeline of its evolution (as shown in
Figure 2). This is followed by a formal definition
and formulation of Speculative Decoding (§4). We
present a taxonomy-based organizational frame-
work to categorize relevant studies, as depicted
in Figure 3. Then, this paper delves into a de-

tailed discussion of leading techniques in Specu-
lative Decoding, including the selection of drafter
models (§5), verification strategies (§6), and align-
ment between the drafter and the target LLM (§7).
Furthermore, we summarize several application
scenarios where Speculative Decoding exhibits ex-
traordinary effectiveness (§8). Finally, to facilitate
beginners interested in this field, we outline the
challenges faced and highlight potential directions
for future research (§9).

3 Evolution of Speculative Decoding

3.1 Motivation

The widespread adoption of LLMs has established
autoregressive decoding as the de facto standard to
LLM inference (Chowdhery et al., 2023; OpenAI,
2023; Jiang et al., 2024). However, autoregressive
decoding is limited by its inference latency, which
primarily stems from the memory-bound compu-
tation of LLMs (Patterson, 2004; Shazeer, 2019).
Specifically, the main latency bottleneck of each
decoding step is not due to computational opera-
tions but arises from the necessity to transfer all
LLM parameters from High-Bandwidth Memory
(HBM) to the on-chip cache of modern accelerators
like GPUs. This process, which generates only one
token per step, leads to the underutilization of these
accelerators and results in inefficiencies.

3.2 Pioneering Draft-then-Verify Efforts

To mitigate the above issue, an intuitive way is to
trade off additional idle computational resources
for more parallelism in LLM inference. To this end,
Stern et al. (2018) introduced Blockwise Decoding,
an approach that incorporates extra feedforward
neural (FFN) heads atop the Transformer decoder,
enabling the simultaneously drafting of multiple
tokens per step. These tokens are then verified by
the original LLM in parallel, ensuring that the out-
puts align with those of the original LLM. As a



Algorithm 1 Autoregressive Decoding
Require: Language modelMq , input sequence x1, . . . , xt,

and target sequence length T ;
1: initialize n← t
2: while n < T do
3: Set qn+1 ←Mq (x | x<n+1)
4: Sample xn+1 ∼ qn+1

5: n← n+ 1
6: end while

pioneering work proposing the Draft-then-Verify
paradigm, Blockwise Decoding effectively reduces
the total number of required LLM calls by increas-
ing generation parallelism per step, thereby accel-
erating inference. However, the limited capacity
of those extra FFN heads resulted in suboptimal
drafting quality, leading to the underestimation of
this paradigm.

To further unleash the potential of this promis-
ing paradigm, Xia et al. (2022) introduced Spec-
ulative Decoding (SpecDec), which utilizes an
independent drafter, notably a specialized Non-
Autoregressive Transformer, to perform the draft-
ing task both accurately and efficiently. Besides,
it presented an innovative verification strategy that
relaxes the conventional rigid verification criterion,
further increasing the acceptance rate of drafted
tokens. Impressively, SpecDec achieves around 5×
speedup over conventional autoregressive decoding
with comparable generation quality, underscoring
the substantial potential of Speculative Decoding.
Besides, this work marks the first time that the idea
of speculative execution (Burton, 1985) is explic-
itly exploited for LLM acceleration.

Following SpecDec, Leviathan et al. (2023) and
Chen et al. (2023a) made concurrent contributions
by proposing Speculative Sampling, expanding this
paradigm to encompass the lossless acceleration
of nucleus sampling. These methods employed
smaller LMs from the same series (e.g., T5-small)
to speed up the inference of their larger counter-
parts (e.g., T5-XXL). Compared to previous work,
these off-the-shelf small LMs do not require ad-
ditional training, enabling the rapid adoption of
Speculative Decoding in LLM acceleration. This
advancement has elevated Speculative Decoding to
the forefront of LLM efficiency research, attracting
widespread interest within the NLP community.

To sum up, these pioneering efforts in Specula-
tive Decoding have gradually solidified the Draft-
then-Verify paradigm, showcasing its promising
potential in LLM acceleration. We provide a de-
tailed categorization and discussion of these studies
and subsequent research in the following sections.

Algorithm 2 Speculative Decoding
Require: Target language model Mq , drafter model Mp,

input sequence x1, . . . , xt, block size K, target sequence
length T , drafting strategy DRAFT, verification criterion
VERIFY, and correction strategy CORRECT;

1: initialize n← t
2: while n < T do

// Drafting: obtain distributions fromMp efficiently
3: Set p1, . . . , pK ← DRAFT (x≤n,Mp)

// Drafting: sample K drafted tokens
4: Sample x̃i ∼ pi, i = 1, . . . ,K

// Verification: compute K+1 distributions in parallel
5: Set qi ←Mq (x | x≤n, x̃<i) , i = 1, . . . ,K + 1

// Verification: verify each drafted token
6: for i = 1 : K do
7: if VERIFY (x̃i, pi, qi) then
8: Set xn+i ← x̃i and n← n+ 1
9: else

10: xn+i ← CORRECT (pi, qi)
11: and Exit for loop.
12: end if
13: end for
14: If all drafted tokens are accepted, sample next token

xn+1 ∼ qK+1 and set n← n+ 1.
15: end while

4 Formulation and Definition

In this section, we first provide a succinct overview
of standard autoregressive decoding (§4.1). Then,
we offer an in-depth exposition of Speculative De-
coding (§4.2), which encompasses a formal defini-
tion, a comprehensive description of the methodol-
ogy, and a detailed elaboration of the algorithm.

4.1 Autoregressive Decoding

Transformer-based LLMs typically make genera-
tions in an autoregressive manner. Given an input
sequence x1, . . . , xt, an autoregressive language
modelMq generates the next token according to:

xt+1 ∼ qn+1 =Mq (x | x<t+1) , (1)

where q is the conditional probability distribution
calculated byMq and xt+1 denotes the next token
sampled from qn+1. We illustrate a detailed process
in Algorithm 1.

As discussed in Section 3, although the stan-
dard autoregressive decoding offers desirable gen-
eration quality, it is strongly bound by memory
bandwidth, resulting in low utilization of contem-
porary accelerator hardware. In this process, each
memory-bound LLM call (i.e., an LLM forward
step) produces merely a single token for the entire
sequence, making the whole generation inefficient
and time-consuming.
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Figure 3: Taxonomy of Speculative Decoding.

4.2 Speculative Decoding
Following Xia et al. (2022), Leviathan et al. (2023),
and Chen et al. (2023a), we here provide a formal
definition of Speculative Decoding:

Speculative Decoding is a Draft-then-
Verify decoding paradigm in which, at
each decoding step, it first efficiently
drafts multiple future tokens and then
verifies all these tokens in parallel using
the target LLM to speed up inference.

We formulate a detailed Speculative Decoding
process in Algorithm 2. Subsequently, we delve
into the two fundamental substeps integral to this
paradigm – drafting and verification:

Drafting At each decoding step, Speculative De-
coding first efficiently drafts multiple future tokens,
as a speculation of the target LLM’s output. For-
mally, given an input sequence x1, . . . , xt and the
target LLMMq, Speculative Decoding employs
an efficient drafter modelMp (e.g., a smaller LM)
to decode the next K drafted tokens:

p1, . . . , pK = DRAFT (x≤t,Mp) ,

x̃i ∼ pi, i = 1, . . . ,K,
(2)

where DRAFT(·) denotes various drafting strate-
gies that we will discuss in Section 5, p is the con-

ditional probability distribution calculated byMp,
and x̃i denotes the drafted token sampled from pi.

Verification Subsequently, these drafted tokens
are verified by the target LLMMq in parallel. For-
mally, given the input sequence x1, . . . , xt and the
draft x̃1, . . . , x̃K , Speculative Decoding utilizes
Mq to compute K + 1 probability distributions
simultaneously:

qi =Mq (x | x≤t, x̃<i) , i = 1, . . . ,K + 1. (3)

Then, each drafted token x̃i is verified by spe-
cific criterion – VERIFY (x̃i, pi, qi). Only those
tokens that meet the criterion are selected as final
outputs, ensuring quality consistent with the target
LLM’s standards. Otherwise, the first drafted token
x̃c that fails the verification will be corrected by
the strategy CORRECT (pc, qc). All drafted tokens
after position c will be discarded, to guarantee the
high quality of the final outputs. If all tokens pass
verification, an additional token xt+K+1 will be
sampled from qK+1 as Eq. (1).

The drafting and verification substeps will be
iterated until the termination condition is met, i.e.,
the [EOS] token is decoded or the sentence reaches
the maximal length.

Consequently, the acceleration effect of Specula-
tive Decoding primarily hinges on the number of



drafted tokens accepted per step. This acceptance
rate is contingent on several factors, including the
capacity of the drafter model, the verification cri-
terion, and the behavior alignment between the
drafter and the target LLM. Additionally, the intrin-
sic efficiency of the drafter itself also contributes
to the overall end-to-end speedup. The subsequent
section will delve into these pivotal components
of Speculative Decoding, as depicted in Figure 3,
through a comparative analysis of current leading
methods.

5 Drafting

As a vital component of Speculative Decoding, the
drafting process has a crucial impact on the ac-
celeration effect of the paradigm. The impact is
determined by two key factors: the speculation ac-
curacy of the drafterMp, measured by the average
number of accepted tokens per step, and the draft-
ing latency (Stern et al., 2018; Xia et al., 2022).
How to trade off high speculation accuracy and low
drafting latency presents a major challenge in this
process. In this section, we classify various drafting
strategies DRAFT (x≤t,Mp) into two categories:
independent drafting (§5.1) and self-drafting (§5.2),
and summarize their formulations in Table 1.

5.1 Independent Drafting

To strike a balance between speculation accuracy
and efficiency, SpecDec (Xia et al., 2022) first
proposed to utilize an independent model to per-
form the drafting task. Specifically, it introduced a
specialized Non-Autoregressive Transformer that
drafts k tokens simultaneously per step. This model
has a deep-shallow encoder-decoder architecture
to run efficiently. Besides, SpecDec incorporated
sequence-level knowledge distillation (Kim and
Rush, 2016) to align the drafter’s outputs with those
of the target LLM, thereby improving speculation
accuracy. However, this method requires training
a specialized drafter model from scratch, which
demands an increased computational budget.

Considering the available models in existing
LLM series (e.g., OPT (Zhang et al., 2022) and
LLaMA (Touvron et al., 2023a,b)), a more straight-
forward and efficient approach is directly employ-
ing a small LM from the same series as the drafter
to accelerate the inference of its larger counter-
parts (Leviathan et al., 2023; Chen et al., 2023a;
Spector and Re, 2023; Sun et al., 2023; Chen et al.,
2023b). For instance, Leviathan et al. (2023) uti-

lized T5-small as the drafter, to accelerate the in-
ference of T5-XXL. These off-the-shelf small LMs
do not require additional training or any modifica-
tion on model architectures, facilitating the quick
adoption of Speculative Decoding. Moreover, since
models in the same series share tokenizers, pretrain-
ing corpora, and similar training processes, they in-
herently have an alignment in generation behaviors.
Nevertheless, there is still a considerable behavior
gap between the small LM and the target LLM,
resulting in suboptimal speculation accuracy.

To improve behavior alignment, recent studies
have investigated various knowledge distillation
strategies to finetune existing small LMs as effec-
tive drafters (Miao et al., 2023; Kim et al., 2023;
Zhou et al., 2023; Liu et al., 2023). Notably, Miao
et al. (2023) proposed a collective boost-tuning
strategy to align various small LMs with the target
LLM on distinct subsets of the training corpus. The
aggregated output of these small LMs, which are
generated in parallel, offers an enhanced specula-
tive prediction of the target LLM’s outputs. Online
Speculative Decoding (Liu et al., 2023) proposed to
continually align the drafter with the target LLM on
the user query data stream. It introduced an online
knowledge distillation strategy that dynamically
adapts the drafter model to the evolving distribu-
tion of user queries on the fly, thereby improving
the speculation accuracy of the drafter.

5.2 Self-Drafting
While leveraging an external drafter model in Spec-
ulative Decoding shows promising speedup, this
approach requires additional effort to train or iden-
tify a suitable drafter model that aligns closely
with the target LLM. It becomes more challenging
when the target LLM lacks smaller counterparts,
e.g. LLaMA-7B (Touvron et al., 2023a,b). More-
over, the integration of two distinct models within
one system introduces increased computational and
operational complexities, especially in distributed
settings (Cai et al., 2023).

To address the above issues, some work has pro-
posed to utilize the target LLM itself for efficient
drafting (Stern et al., 2018; Santilli et al., 2023;
Hooper et al., 2023; Cai et al., 2023; Fu et al.,
2023; Monea et al., 2023). Particularly, Blockwise
Decoding (Stern et al., 2018) and Medusa (Cai
et al., 2023) introduced additional FFN heads on
top of the Transformer decoder, enabling the gen-
eration of multiple tokens simultaneously per step.
Compared with external drafters, these lightweight



Methods DRAFT (x≤t,Mp) Drafter Type

Parallel
Drafting p1, . . . , pK =Mp (x | x≤t)

FFN Heads (Stern et al., 2018; Cai et al., 2023), Non-Autoregressive
LM (Xia et al., 2022), Mask-Predict (Santilli et al., 2023; Fu et al., 2023)

Autoregressive
Drafting

pi =Mp (x | x≤t, x̃<i) , i =
1, . . . ,K

Small LM (Leviathan et al., 2023; Chen et al., 2023a), Early Existing (Yang
et al., 2023b; Hooper et al., 2023), Layer Skipping (Zhang et al., 2023a)

Table 1: Summary of formulations for various drafting strategies in Speculative Decoding. We categorize these
methods into two distinct groups based on their formulations: parallel drafting and autoregressive drafting.

FFN heads reduce extra computational overhead
and are friendly to distributed inference. There is
also another line of research utilized early existing
or layer skipping on the target LLM itself to per-
form the drafting task (Yang et al., 2023b; Zhang
et al., 2023a; Hooper et al., 2023). For instance,
Yang et al. (2023b) introduces additional subpro-
cesses that exist early in the current decoding step
to start drafting future tokens in advance. Similarly,
Self-Speculative (Zhang et al., 2023a) proposed to
adaptively skip several intermediate layers during
inference to draft efficiently.

In contrast to prior work that focused on extend-
ing model architectures or altering the inference
process, Santilli et al. (2023) introduced a simple
drafting strategy that directly adds multiple [PAD]
tokens to the end of the input prompt. The effec-
tiveness of this method stems from the robustness
of LLMs in handling noisy inputs. Specifically,
LLMs may still be capable of predicting the next
token even with several [PAD] tokens inserted in
the prefix. However, this approach deviates from
the autoregressive pretraining pattern of LLMs,
leading to suboptimal drafting quality. To tackle
this problem, Fu et al. (2023) proposed to reform
these low-quality drafted tokens into multiple n-
grams, which effectively improves the speculation
accuracy; Monea et al. (2023) introduced multiple
learnable [LA] tokens and finetuned these token
embeddings on a small training dataset to enhance
the parallel decoding performance.

6 Verification

In each decoding step, the drafted tokens are then
verified in parallel, to ensure the output quality is
highly consistent with the target LLM. This process
also determines the number of accepted tokens per
step, a vital factor impacting the speedup. In this
section, we summarize various verification criteria
VERIFY (x̃i, pi, qi) (as shown in Table 2), encom-
passing those supporting greedy decoding (§6.1)
and nucleus sampling (§6.2) in LLM inference. Be-

sides, we introduce token tree verification (§6.3),
an effective strategy to increase token acceptance
per step.

6.1 Greedy Decoding
Early attempts at Speculative Decoding focused
on the verification criterion that supports greedy
decoding, which guarantees that the outputs are
exactly the same as the greedy decoding results
of the target LLM (Stern et al., 2019; Sun et al.,
2021; Xia et al., 2022). Specifically, this criterion
requires that only those drafted tokens matching the
top-1 predictions of the target LLM could pass the
verification. Formally, given the input sequence
x1, . . . , xt, the drafted tokens x̃1, . . . , x̃K , and
the computed probability distributions p1, . . . , pK ,
q1, . . . , qK as obtained from Eq. (2) and (3), respec-
tively, the verification criterion VERIFY (x̃i, pi, qi)
on the ith drafted token is formulated as

x̃i = argmax qi, (4)

where i = 1, . . . ,K. The first position c that the
drafted token x̃c fails the verification denotes the
bifurcation position. The output token at this posi-
tion xt+c will be corrected by the correction strat-
egy CORRECT (pc, qc), which simply replaces the
drafted token with the top-1 prediction here:

xt+c ← argmax qc. (5)

The verification criterion of greedy decoding is
straightforward and effective. Thus, multiple subse-
quent studies have adopted this criterion to demon-
strate the efficacy of their methodologies (Santilli
et al., 2023; Yang et al., 2023b; Hooper et al., 2023;
Zhang et al., 2023a; Fu et al., 2023). Besides, this
criterion has been prominently featured in numer-
ous online demonstrations (Joao Gante, 2023; Cai
et al., 2023; Fu et al., 2023), highlighting how the
algorithm generates faster than greedy decoding
while maintaining identical outputs. However, this
approach is not without its limitations. The strict
matching requirement of this criterion often results



Methods VERIFY (x̃i, pi, qi) CORRECT (pc, qc) Representative Work

Greedy
Decoding x̃i = argmax qi xt+c ← argmax qc

Blockwise Decoding (Stern et al.,
2018), SpecDec (Xia et al., 2022)

Nucleus
Sampling r < min

(
1, qi(x̃i)

pi(x̃i)

)
, r ∼ U [0, 1] xt+c ∼ norm(max (0, qc − pc))

Speculative Decoding (Leviathan
et al., 2023), SpS (Chen et al., 2023a)

Table 2: Summary of formulations for various verification strategies in Speculative Decoding.

in the rejection of potentially suitable drafted to-
kens, simply because they differ from the top-1
predictions of the target LLM, thereby constraining
the speedup of the paradigm.

To tackle this problem, multiple studies have
proposed various approximate verification crite-
ria (Stern et al., 2018; Xia et al., 2022; Kim et al.,
2023). Compared with the lossless greedy decod-
ing criterion above, these methods slightly relax
the matching requirement to trust the drafts more,
leading to higher acceptance of drafted tokens. For
instance, SpecDec (Xia et al., 2022) only requires
the drafted tokens to fall in top-k candidates of
the target LLM with a tolerable log-likelihood gap
away from the top-1 prediction; BiLD (Kim et al.,
2023) proposed a rollback verification criterion that
rejects drafted tokens if the number of consecutive
mismatch tokens exceeds a fixed threshold.

6.2 Nucleus Sampling
Following Stern et al. (2019) and Xia et al. (2022),
subsequent work extended Speculative Decoding
to support nucleus sampling (Leviathan et al., 2023;
Chen et al., 2023a), accelerating the target LLM’s
inference without changing its output distribution.
Formally, given the initial sequence x1, . . . , xt, the
drafted tokens x̃1, . . . , x̃K and the computed dis-
tributions p1, . . . , pK , q1, . . . , qK , the verification
criterion VERIFY (x̃i, pi, qi) on the ith drafted to-
ken is

r < min

(
1,

qi(x̃i)

pi(x̃i)

)
, r ∼ U [0, 1] , (6)

where r denotes a random number drawn from
a uniform distribution U [0, 1]; qi(x̃i) and pi(x̃i)
are the probability of x̃i according to Mq and
Mp, respectively; and i = 1, . . . ,K. In other
words, this criterion accepts the drafted token x̃i if
qi(x̃i) ≥ pi(x̃i), and in case qi(x̃i) < pi(x̃i) it re-
jects the token with probability 1− qi(x̃i)

pi(x̃i)
. The cor-

responding correction strategy CORRECT (pc, qc)
resamples the output token at the bifurcation posi-
tion c from an adjusted distribution:

xt+c ∼ norm(max (0, qc − pc)). (7)
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Figure 4: Illustration of the token tree sequences (left)
and tree attention matrix (right). For simplicity, we only
visualize the tree attention of tokens in white colors.

Leviathan et al. (2023) and Chen et al. (2023a)
theoretically proved that Speculative Decoding
with this sampling strategy maintains identical out-
put distributions to the target LLM, which has been
followed by multiple subsequent studies (Liu et al.,
2023; Zhou et al., 2023; Monea et al., 2023; Chen
et al., 2023b). In addition to the strict require-
ment in Eq. (6), some work also introduces approx-
imate verification strategies to improve the rate of
drafted token acceptance (Leviathan et al., 2023;
Zhou et al., 2023). For instance, Leviathan et al.
(2023) multiplies pi(x̃i) in Eq. (6) by a lenience pa-
rameter l ∈ [0, 1], relaxing the criterion of trusting
the draft more.

6.3 Token Tree Verification

As illustrated in Table 2, prior verification strate-
gies focus on verifying a single draft sequence and
lack the consideration of different draft candidates,
leading to suboptimal speculation accuracy. To ad-
dress this issue, SpecInfer (Miao et al., 2023) first
proposed token tree verification, an effective strat-
egy that enables the target LLM to verify multiple
candidate draft sequences in parallel.

As illustrated in Figure 4, compared to prior
strategies that only verify a single draft sequence,
token tree verification first merges multiple can-
didate draft sequences into a token tree, then uti-
lizes a specially designed tree attention mechanism
to verify the whole token tree in parallel. Re-
cent research has investigated various approaches



Methods Drafting Verification Target LLM Speedup
(reported)

Approach Alignment Tuning-free Greedy Nucleus Token Tree

In
de

pe
nd

-D

SpecDec (Xia et al., 2022) Non-Auto LM Seq-KD ✗ ✓ ✗ ✗ Transformer-base (65M) 3.9× ∼ 5.1×
SpS (Chen et al., 2023a) Small LM - ✓ ✓ ✓ ✗ Chinchilla (70B) 1.9× ∼ 2.5×
BiLD (Kim et al., 2023) Small LM Seq-KD ✗ ✗ ✗ ✗ T5-large (780M) 1.5× ∼ 2.1×
SpecInfer (Miao et al., 2023) Boost-tuned LMs Col-BT ✗ ✓ ✓ ✓ LLaMA (30B-65B) 2.0× ∼ 2.4×
DistillSpec (Zhou et al., 2023) Small LM KD ✗ ✓ ✓ ✗ T5-XL (3B) -
Online Speculative (Liu et al., 2023) Small LM Online-KD ✗ ✓ ✓ ✗ Vicuna (7B) -
CS. Drafting (Chen et al., 2023b) Cascaded LMs - ✓ ✓ ✓ ✗ FLAN-T5-xxl (11B) -
REST (He et al., 2023) Context Retrieval - ✓ ✓ ✓ ✓ Vicuna (7B-13B) 1.7× ∼ 1.8×

Se
lf-

D

Blockwise Decoding (Stern et al., 2018) FFN Heads Seq-KD ✗ ✓ ✗ ✗ Transformer-big (213M) 1.7× ∼ 3.0×
Medusa (Cai et al., 2023) FFN Heads - ✗ ✓ ✗ ✓ Vicuna (7B-33B) 1.9× ∼ 2.0×
PPD (Yang et al., 2023b) Early Existing - ✗ ✓ ✗ ✗ Vicuna (13B) 1.1× ∼ 1.5×
Self-Speculative (Zhang et al., 2023a) Layer Skipping - ✓ ✓ ✗ ✗ LLaMA-2 (13B-70B) 1.4× ∼ 1.5×
Parallel Decoding (Santilli et al., 2023) Mask-Predict - ✓ ✓ ✗ ✗ MBart50 (610M) 1.0× ∼ 1.1×
Lookahead Decoding (Fu et al., 2023) Mask-P & N-grams - ✓ ✓ ✗ ✗ LLaMA-2 (7B-70B) 1.5× ∼ 2.3×
PaSS (Monea et al., 2023) Learnable Tokens - ✗ ✓ ✓ ✗ LLaMA (7B) 1.3× ∼ 1.4×

Table 3: Summary of various Speculative Decoding methods. “Independ-D” and “Self-D” denote independent
drafting and self-drafting, respectively. “Greedy”, “Nucleus”, and “Token Tree” denote whether the method supports
greedy decoding, nucleus sampling, and token tree verification, respectively. We list the most representative target
LLMs for each method and the speedups in the original paper (if reported), which is obtained with a batch size of 1.

to obtain the candidate draft sequences. For in-
stance, Miao et al. (2023) generated diverse draft
sequences from different boost-tuned LMs; Cai
et al. (2023) considered the top-k predictions from
each FFN head to obtain multiple candidates, while
He et al. (2023) utilized different continuations (of
the input prompt) from the retrieved documents
as candidate draft sequences. Subsequently, those
obtained candidate draft sequences are merged into
a token tree by sharing prefixes and are fed into the
target LLM with a tree attention mask for parallel
verification, as shown in Figure 4.

7 Alignment

As illustrated in Section 5, improving speculation
accuracy is the key to the speedup of Speculative
Decoding: the closer the prediction behavior of the
drafter is to the target LLM, the higher the accep-
tance rate of drafted tokens. To this end, existing
work has explored various knowledge distillation
(KD) strategies to align the drafter’s outputs with
those of the target LLM (Stern et al., 2018; Xia
et al., 2022; Miao et al., 2023; Liu et al., 2023;
Kim et al., 2023; Zhou et al., 2023). Blockwise
Decoding first adopted sequence-level knowledge
distillation (Seq-KD) (Kim and Rush, 2016) for
alignment, which trained the drafter model on the
sentences generated by the target LLM. Besides,
Seq-KD is also an effective strategy to improve the
generation quality of parallel decoding (Gu et al.,
2018; Qian et al., 2021), which enhances the draft-
ing performance. Thus, this approach has been
adopted by multiple subsequent studies (Xia et al.,
2022; Miao et al., 2023; Kim et al., 2023). For
instance, Miao et al. (2023) proposed a collective

boost-tuning (Col-BT) strategy, which adopted Seq-
KD to finetune multiple small LMs on the training
data and utilized their aggregated output as the
draft, improving the speculation accuracy.

Though Seq-KD is effective, it ignores the prob-
ability distributions of the target LLM and only
trains the drafter model with one-hot labels. Thus,
this strategy becomes less effective when Specula-
tive Decoding is adopted for nucleus sampling. To
address this, recent studies have explored other KD
strategies for Speculative Decoding (Zhou et al.,
2023; Liu et al., 2023). Notably, DistillSpec (Zhou
et al., 2023) conducted a comprehensive compari-
son of different KD strategies on Speculative De-
coding across various downstream tasks, pointing
out that the choice of the optimal KD algorithm
largely depends on specific tasks and the verifica-
tion strategy. Online Speculative (Liu et al., 2023)
proposed an online KD strategy that dynamically
aligns the drafter with the target LLM on the fly
using the query data.

We summarize the main features of existing
Speculative Decoding methods in Table 3, includ-
ing the drafter type or the drafting strategy, the
alignment approach, supported verification strate-
gies, and the reported speedup, etc.

8 Applications

In addition to serving as a general paradigm, recent
work has revealed that some variants of Specula-
tive Decoding demonstrate extraordinary effective-
ness in specific tasks. Furthermore, other research
has applied this paradigm to address latency issues
unique to certain application scenarios, achieving
inference acceleration. Below, we will provide a



detailed introduction to these promising works.
Recent studies by Sun et al. (2021) and Yang

et al. (2023a) have highlighted Speculative De-
coding is particularly well suited for tasks where
model inputs and outputs are highly similar, such as
Grammatical Error Correction (Wang et al., 2021;
Bryant et al., 2023) and Retrieval-augmented Gen-
eration (Lewis et al., 2020; Cai et al., 2022). These
methods introduced a specialized form of Specula-
tive Decoding, where the initial user input or the
retrieved context is directly employed as drafts. For
instance, SAD (Sun et al., 2021), an early attempt
at Speculative Decoding on Grammatical Error Cor-
rection, utilized the input sentence with grammat-
ical errors as a draft and leveraged the LLM to
verify the whole sentence in parallel, achieving a
9×∼12× speedup. Similarly, LLMA (Yang et al.,
2023a) selected text spans from the reference as
drafts, demonstrating a 2×∼3× speedup across
various practical application scenarios including
Retrieval-augmented Generation, Cache-assisted
Generation, and Multi-turn Conversations.

Beyond these works, RaLMSpec (Zhang et al.,
2023b) adopted Speculative Decoding to acceler-
ate retrieval-augmented language models (RaLMs).
It pointed out that the main latency bottleneck of
iterative RaLMs is the frequent retrieval from a
vast knowledge base. To accelerate inference, this
method proposed to maintain a local cache for spec-
ulative retrieval, achieving around 2× speedup with
identical model outputs. LLMCad (Xu et al., 2023)
applied Speculative Decoding to on-device LLM in-
ference. Concretely, it proposed to generate drafts
with a smaller real-time LM that can be hosted in
device memory, and only utilize the target LLM
for parallel verification. This approach effectively
reduces repetitive releasing and loading of model
weights, achieving a 9.3× speedup compared to
existing inference engines.

9 Challenges and Future Directions

How to trade off speculation accuracy and draft-
ing efficiency? As discussed in Sections 5, scal-
ing up the drafter can effectively enhance specu-
lation accuracy, yet it largely reduces the drafting
efficiency and even the overall speedup. Therefore,
it is essential to strike a balance between specula-
tion accuracy and drafting latency. Among existing
strategies, behavior alignment is a promising ap-
proach to address this issue, as it improves specula-
tion accuracy without increasing latency. However,

despite recent advancements (Miao et al., 2023;
Zhou et al., 2023; Liu et al., 2023), there is still
considerable room for improvement to align the
drafter with the target LLM. For example, given
that the drafted tokens after the bifurcation posi-
tion are all discarded, one potential direction could
involve encouraging the drafter to prioritize the
generation quality of early-position tokens. Be-
yond alignment, other factors such as the quality of
drafting (Fu et al., 2023) and the determination of
speculation length (Su et al., 2023) also influence
speculation accuracy and merit further exploration.

How to integrate Speculative Decoding with
other leading techniques? As a general decod-
ing paradigm, Speculative Decoding has already
demonstrated its potential in conjunction with other
advanced techniques (Yang et al., 2023a; Zhang
et al., 2023b; Li et al., 2023). For instance, Yuan
et al. (2023) combined Speculative Decoding with
Contrastive Decoding (Li et al., 2023), which not
only speeds up the inference but also substantially
improves the generation quality. In addition to the
acceleration of text-only LLMs, the application
of Speculative Decoding in multimodal inference,
such as image synthesis, text-to-speech synthesis,
and video generation, is also an intriguing and valu-
able direction for future research.

10 Conclusion

In recent years, the continual scaling up of LLMs
has significantly increased the demand for efficient
LLM inference. Speculative Decoding, a novel
decoding paradigm that accelerates LLM infer-
ence while maintaining identical generation qual-
ity, has emerged as a promising solution. This
paper presents a comprehensive survey of the ex-
isting literature on Speculative Decoding, includ-
ing a formal definition and formulation of Spec-
ulative Decoding, an in-depth review of various
leading techniques, as well as challenges and po-
tential directions for future research. To the best
of our knowledge, this is the first survey dedicated
to Speculative Decoding. The primary objective
of this paper is to clarify the current research land-
scape and provide insights into the future trajectory
of this promising paradigm.
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